

### WEST BENGAL STATE UNIVERSITY B.Sc. Honours 3rd Semester Examination, 2022-23

## MTMACOR06T-MATHEMATICS (CC6)

#### GROUP THEORY I

Time Allotted: 2 Hours

Full Marks: 50

3

5

2

The figures in the margin indicate full marks. Candidates should answer in their own words and adhere to the word limit as practicable. All symbols are of usual significance.

# Answer Question No. 1 and any five from the rest

 $2 \times 5 = 10$ 

- Answer any five questions from the following: 1.
  - (a) Let  $\alpha = (1 \ 2 \ 4 \ 6)$  and  $\beta = (3 \ 5 \ 7)$  be two members of the symmetric group  $S_7$ . Find  $\alpha\beta\alpha^{-1}$ .
  - (b) Let  $G = \langle a \rangle$  be a cyclic group of order 30. Find the order of the subgroup  $\langle a^5 \rangle$ .
  - (c) Show that a group of order 119 can have atmost 112 elements of order 17.
  - (d) A binary operation \* on  $\mathbb{Z}$  is defined by m\*n=2m+n. Show that there is a left identity element but no right identity element.
  - (e) Find all the elements of order 4 in  $D_4$ , the dihedral group of order 4.
  - (f) Let H and K be the subgroups of a group G. Prove that the set  $N_K(H) = \{x \in K : xH = Hx\}$  is a subgroup of G.
  - (g) Let  $G = H \times K$  be the external direct product of two groups H and K. Prove that the set  $S = \{(e, a) : e \text{ is the identity of the group } H \text{ and } a \in K\}$  is a normal subgroup of G.
  - (h) If  $f = (i_1 j_1)(i_2 j_2)\cdots(i_k j_k)$  is a product of finite number of transpositions, find  $f^{-1}$ .
  - (i) If H and K are subgroups of a group G with o(H) = 18 and o(K) = 35. Find  $o(H \cap K)$ .
  - 2. (a) Show that the set of all 2×2 real orthogonal matrices form a group with respect to
    - (b) Let  $T = \{1, -1\}$  and  $S = T \times T$ . Let f and g be two bijections from S onto Sdefined by f(x, y) = (x, -y) and g(x, y) = (y, -x) for all  $(x, y) \in S$ . Prove that the set  $G = \{f^i \circ g^i : i = 0, 1; j = 0, 1, 2, 3\}$  forms a group under the composition 'o' of mappings, where  $f^i = f \circ f \circ \cdots \circ f$  (i-times) and  $f^0 =$  the identity mapping on S.
  - 3. (a) Suppose that a group G contains two elements a, b such that o(a) = 5, o(b) = 2and  $a^4b = ba$ . Find the order of ab in G.
    - (b) In a group G,  $(ab)^3 = a^3b^3$  for all  $a, b \in G$ . Prove that the set  $H = \{x^3 : x \in G\}$  is a 2 subgroup of G. 4
    - (c) Let G be a group and H a nonempty finite subset of G. Prove that H is a subgroup of G if and only if  $ab \in H$ , for all  $a, b \in H$ . Turn Over

#### CBCS/B.Sc./Hons./3rd Sem./MTMACOR06T/2022-23

| 4. | (a)  | Let $\sigma \in S_r (r \ge 2)$ and $\sigma = \sigma_1 \sigma_2 \sigma_3 \cdots \sigma_k$ be a product of disjoint cycles in $S_r$ .                                                                                                        | . 4 |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (b)  | Suppose $o(\sigma_i) = n_i$ , $i = 1, 2, \dots, k$ . Prove that $o(\sigma) = \text{lcm}(n_1, n_2, \dots, n_k)$ in $S_r$ .  Let $\beta = (1 \ 5 \ 3 \ 7)(9 \ 6 \ 8 \ 4 \ 2 \ 10)$ in $S_{10}$ . Find the smallest positive integer $n$ such | 2   |
|    | ` '  | that $\beta^n = \beta^{-3}$ .                                                                                                                                                                                                              |     |
|    | (c)  | Let $\sigma = (1 \ 3 \ 7)(2 \ 4 \ 6 \ 9)(5 \ 8 \ 10 \ 11)$ and $\rho = (3 \ 2 \ 5 \ 8)(4 \ 7 \ 10 \ 1)(6 \ 9 \ 11)$ be                                                                                                                     | 2   |
|    | ` '  | two permutations in $S_{11}$ . Find a permutation $\tau \in S_{11}$ such that $\rho = \tau \sigma \tau^{-1}$ .                                                                                                                             |     |
| 5. | (a)  | Let $H$ be a subgroup of a group $G$ . For any $a \in G$ , prove that the sets $aH$ and $H$ are equipotent.                                                                                                                                | 2   |
|    | (b)  | State and prove Lagrange's theorem for finite groups.                                                                                                                                                                                      | 4   |
|    | (c)  | Let $p$ be a prime integer and $a$ be an integer such that $p$ does not divide $a$ . Apply Lagrange's theorem to show that $a^{p-1} \equiv 1 \pmod{p}$ .                                                                                   | 2   |
| 6. | (a)  | Prove that a finite group $G$ of order $n$ is cyclic if and only if it has an element of order $n$ .                                                                                                                                       | 4   |
|    | (b)  | Find all cyclic subgroup of the symmetric group $S_3$ .                                                                                                                                                                                    | 2   |
|    |      | Let G be a cyclic group of order 24 and $a \in G$ . If $a^8 \neq e$ and $a^{12} \neq e$ then show that $G = \langle a \rangle$ .                                                                                                           | 2   |
| 7. | (a)  | Let $G = U_{16}$ , the group of units modulo 16, $H = \{[1], [15]\}$ and $K = \{[1], [9]\}$ . Find $G/H$ , $G/K$ and $HK$ .                                                                                                                | 3   |
|    | (b)  | Show that a subgroup of index 2 is a normal subgroup.                                                                                                                                                                                      | 2   |
|    | (c)  | Let $H = \langle [8] \rangle$ in $\mathbb{Z}_{24}$ . What is the order of $[14] + H$ in $\mathbb{Z}_{24}$ ?                                                                                                                                | 3   |
| 8. |      | Define kernel of a group homomorphism. Show that the kernel is a normal subgroup of the domain.                                                                                                                                            | 1+3 |
|    | (b)  | Show that the function $\phi:(\mathbb{R},+)\to(S^1,\cdot)$ defined by $\phi(x)=e^{2\pi ix}, x\in\mathbb{R}$ , is a group                                                                                                                   | 2+2 |
|    | ,    | homomorphism, where $S^1$ is the multiplicative group of all complex numbers $z$ with $ z =1$ . Find the kernel of the homomorphism $\phi$ .                                                                                               |     |
| 9. | (a)  | Let $G$ and $G'$ be two finite groups and $f:G\to G'$ be a group homomorphism.<br>Show for every $a\in G$ , that $o(f(a))$ divides $o(a)$ .                                                                                                | 2   |
|    | (b)  | Find the number of group homomorphisms from the cyclic group $\mathbb{Z}_{10}$ to the cyclic                                                                                                                                               | 2   |
|    | (c)  | group $\mathbb{Z}_{21}$ .<br>Prove that any group of order 6 is either isomorphic to $\mathbb{Z}_6$ or to $S_3$ .                                                                                                                          | 4   |
| 0. | .(a) | Let $H$ and $K$ be two subgroups of a group $G$ . If $K$ is normal in $G$ , prove that                                                                                                                                                     | 3   |
|    | ` '  | $H/(H \cap K) \simeq (HK)/K$ .                                                                                                                                                                                                             |     |
|    | (b)  | Show that $\mathbb{Z}_6$ is not a homomorphic image of $\mathbb{Z}_9$ .                                                                                                                                                                    | 2   |
|    |      | Let $G$ denote the Klein's 4-group. Find a subgroup $H$ of the symmetric group $S_4$ such that $G$ is isomorphic to $H$ .                                                                                                                  | 3   |